[[Category theory MOC]]
# Functor category
Given two categories $\cat C$ and $\cat D$, we construct a **functor category** $\cat D^{\cat C}$ where each object is a functor and
each morphism is a [[natural transformation]] $\eta : F \Rightarrow G : \cat C \to \cat D$.
## Special cases
- [[Endofunctor category]] $\cat C^\cat{C}$, which possesses additional monoidal structure.
- [[Category of presheaves]] $\Set^{\op{\cat C}}$
#
---
#state/tidy | #lang/en | #SemBr